Experiences with MapReduce,
an Abstraction for Large-Scale Computation

Jeff Dean
Google, Inc.



Problem: lots of data

* Example: 20+ billion web pages x 20KB = 400+ terabytes

* One computer can read 30-35 MB/sec from disk

— ~four months to read the web

~1,000 hard drives just to store the web

* Even more to do something with the data

Google



Solution: spread the work over many machines

* Good news: same problem with 1000 machines, < 3 hours

* Bad news: programming work
— communication and coordination
— recovering from machine failure
— status reporting
— debugging
— optimization
— locality

* Bad news lI: repeat for every problem you want to solve

Google



MapReduce

* A simple programming model that applies to many large-scale
computing problems

* Hide messy details in MapReduce runtime library:
— automatic parallelization
— load balancing
— network and disk transfer optimization
— handling of machine failures
— robustness

— improvements to core library benefit all users of library!

Google



Typical problem solved by MapReduce

* Read a lot of data

* Map: extract something you care about from each record
* Shuffle and Sort

* Reduce: aggregate, summarize, filter, or transform

* Write the results

Outline stays the same,
map and reduce change to fit the problem

Google



10

More specifically...

* Programmer specifies two primary methods:
— map(k, v) — <k, v'>*
— reduce(k’, <v'>*) — <k', v'>*

* All v with same k' are reduced together, in order.

* Usually also specify:
— partition(k’ , total partitions) -> partition for k’
* often a simple hash of the key
* allows reduce operations for different k’ to be parallelized

Google



MapReduce: Scheduling

* One master, many workers
— Input data split into M map tasks (typically 64 MB in size)
— Reduce phase partitioned into R reduce tasks
— Tasks are assigned to workers dynamically
— Often: M=200,000; R=4,000; workers=2,000

* Master assigns each map task to a free worker
— Considers locality of data to worker when assigning task
— Worker reads task input (often from local disk!)

— Worker produces R local files containing intermediate k/v pairs

* Master assigns each reduce task to a free worker
— Worker reads intermediate k/v pairs from map workers

— Worker sorts & applies user’ s Reduce op to produce the output

. Google



Input

Parallel MapReduce data

Partitioned
ﬁl ﬁl ﬁl 2 output

Google




Task Granularity and Pipelining

* Fine granularity tasks: many more map tasks than machines
— Minimizes time for fault recovery
— Can pipeline shuffling with map execution

— Better dynamic load balancing

 Often use 200,000 map/5000 reduce tasks w/ 2000 machines

Process Time >

User Program [MapReduce() .. wait ...

Master Assign tasks to worker machines...

Worker 1 Map I| Map3

Worker 2 Map 2

Worker 3 Reduce |

Worker 4 Reduce 2

Google



Conclusion

* MapReduce has proven to be a remarkably-useful abstraction
* Greatly simplifies large-scale computations at Google

* Fun to use: focus on problem, let library deal with messy details

— Many thousands of parallel programs written by hundreds of different
programmers in last few years

— Many had no prior parallel or distributed programming experience

Further info:

MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean
and Sanjay Ghemawat, OSDI’ 04

(or search Google for [MapReduce)])

. Google



