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Problem: lots of data

• Example: 20+ billion web pages x 20KB = 400+ terabytes
• One computer can read 30-35 MB/sec from disk

– ~four months to read the web

• ~1,000 hard drives just to store the web
• Even more to do something with the data
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Solution: spread the work over many machines

• Good news: same problem with 1000 machines, < 3 hours
• Bad news: programming work

– communication and coordination
– recovering from machine failure
– status reporting
– debugging
– optimization
– locality

• Bad news II: repeat for every problem you want to solve
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MapReduce

• A simple programming model that applies to many large-scale 
computing problems

• Hide messy details in MapReduce runtime library:
– automatic parallelization
– load balancing
– network and disk transfer optimization
– handling of machine failures
– robustness
– improvements to core library benefit all users of library!
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Typical problem solved by MapReduce

• Read a lot of data
• Map: extract something you care about from each record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, or transform
• Write the results

Outline stays the same,
map and reduce change to fit the problem



10

More specifically…

• Programmer specifies two primary methods:
– map(k, v) → <k', v'>*
– reduce(k', <v'>*) → <k', v’’>*

• All v' with same k' are reduced together, in order.

• Usually also specify:
– partition(k’, total partitions) -> partition for k’

• often a simple hash of the key
• allows reduce operations for different k’ to be parallelized
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MapReduce: Scheduling

• One master, many workers 
– Input data split into M map tasks (typically 64 MB in size)
– Reduce phase partitioned into R reduce tasks
– Tasks are assigned to workers dynamically
– Often: M=200,000; R=4,000; workers=2,000

• Master assigns each map task to a free worker 
– Considers locality of data to worker when assigning task
– Worker reads task input (often from local disk!)
– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker 
– Worker reads intermediate k/v pairs from map workers

– Worker sorts & applies user’s Reduce op to produce the output 
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Parallel MapReduce
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Task Granularity and Pipelining

• Fine granularity tasks: many more map tasks than machines
– Minimizes time for fault recovery
– Can pipeline shuffling with map execution
– Better dynamic load balancing

• Often use 200,000 map/5000 reduce tasks w/ 2000 machines
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Conclusion

• MapReduce has proven to be a remarkably-useful abstraction
• Greatly simplifies large-scale computations at Google
• Fun to use: focus on problem, let library deal with messy details

– Many thousands of parallel programs written by hundreds of different 
programmers in last few years

– Many had no prior parallel or distributed programming experience

Further info:
MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean 
and Sanjay Ghemawat, OSDI’04
http://labs.google.com/papers/mapreduce.html
(or search Google for [MapReduce])


