
Experiences with MapReduce,
an Abstraction for Large-Scale Computation

Jeff Dean
Google, Inc.



3

Problem: lots of data

• Example: 20+ billion web pages x 20KB = 400+ terabytes
• One computer can read 30-35 MB/sec from disk

– ~four months to read the web

• ~1,000 hard drives just to store the web
• Even more to do something with the data



4

Solution: spread the work over many machines

• Good news: same problem with 1000 machines, < 3 hours
• Bad news: programming work

– communication and coordination
– recovering from machine failure
– status reporting
– debugging
– optimization
– locality

• Bad news II: repeat for every problem you want to solve



8

MapReduce

• A simple programming model that applies to many large-scale 
computing problems

• Hide messy details in MapReduce runtime library:
– automatic parallelization
– load balancing
– network and disk transfer optimization
– handling of machine failures
– robustness
– improvements to core library benefit all users of library!



9

Typical problem solved by MapReduce

• Read a lot of data
• Map: extract something you care about from each record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, or transform
• Write the results

Outline stays the same,
map and reduce change to fit the problem



10

More specifically…

• Programmer specifies two primary methods:
– map(k, v) → <k', v'>*
– reduce(k', <v'>*) → <k', v’’>*

• All v' with same k' are reduced together, in order.

• Usually also specify:
– partition(k’, total partitions) -> partition for k’

• often a simple hash of the key
• allows reduce operations for different k’ to be parallelized



20

MapReduce: Scheduling

• One master, many workers 
– Input data split into M map tasks (typically 64 MB in size)
– Reduce phase partitioned into R reduce tasks
– Tasks are assigned to workers dynamically
– Often: M=200,000; R=4,000; workers=2,000

• Master assigns each map task to a free worker 
– Considers locality of data to worker when assigning task
– Worker reads task input (often from local disk!)
– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker 
– Worker reads intermediate k/v pairs from map workers

– Worker sorts & applies user’s Reduce op to produce the output 



21

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned 
output

Master



22

Task Granularity and Pipelining

• Fine granularity tasks: many more map tasks than machines
– Minimizes time for fault recovery
– Can pipeline shuffling with map execution
– Better dynamic load balancing

• Often use 200,000 map/5000 reduce tasks w/ 2000 machines



43

Conclusion

• MapReduce has proven to be a remarkably-useful abstraction
• Greatly simplifies large-scale computations at Google
• Fun to use: focus on problem, let library deal with messy details

– Many thousands of parallel programs written by hundreds of different 
programmers in last few years

– Many had no prior parallel or distributed programming experience

Further info:
MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean 
and Sanjay Ghemawat, OSDI’04
http://labs.google.com/papers/mapreduce.html
(or search Google for [MapReduce])


