
Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search
Christopher Manning and Pandu Nayak

Lecture 14: Learning to Rank (with GBDTs)

Borrows slides/pictures from Schigehiko Schamoni

Introduction to Information Retrieval

Machine learning for IR ranking?
§ We’ve looked at methods for ranking documents in IR

§ Cosine similarity, inverse document frequency, BM25, proximity, pivoted
document length normalization, (will look at) Pagerank, …

§ We’ve looked at methods for classifying documents
using supervised machine learning classifiers
§ Rocchio, kNN, decision trees, etc.

§ Surely we can also use machine learning to rank the
documents displayed in search results?
§ Sounds like a good idea
§ Known as “machine-learned relevance” or “learning to rank”

Sec. 15.4

Introduction to Information Retrieval

Introduction to Information Retrieval

Machine learning for IR ranking
§ This “good idea” has been actively researched – and

actively deployed by major web search engines – in
the last 10 years

§ Why didn’t it happen earlier?
§ Modern supervised ML has been around for about 25

years…
§ Naïve Bayes has been around for about 60 years…

Introduction to Information Retrieval

Machine learning for IR ranking
§ There’s some truth to the fact that the IR community

wasn’t very connected to the ML community
§ But there were a whole bunch of precursors:

§ Wong, S.K. et al. 1988. Linear structure in information
retrieval. SIGIR 1988.

§ Fuhr, N. 1992. Probabilistic methods in information
retrieval. Computer Journal.

§ Gey, F. C. 1994. Inferring probability of relevance using the
method of logistic regression. SIGIR 1994.

§ Herbrich, R. et al. 2000. Large Margin Rank Boundaries for
Ordinal Regression. Advances in Large Margin Classifiers.

Introduction to Information Retrieval

Why weren’t early attempts very
successful/influential?

§ Sometimes an idea just takes time to be appreciated…
§ Limited training data

§ Especially for real world use (as opposed to writing
academic papers), it was very hard to gather test collection
queries and relevance judgments that are representative of
real user needs and judgments on documents returned
§ This has changed, both in academia and industry

§ Poor machine learning techniques
§ Insufficient customization to IR problem
§ Not enough features for ML to show value

Introduction to Information Retrieval

Why wasn’t ML much needed?
§ Traditional ranking functions in IR used a very small

number of features, e.g.,
§ Term frequency
§ Inverse document frequency
§ Document length

§ It was easy possible to tune weighting coefficients by
hand
§ And people did
§ You students do it in PA3

Introduction to Information Retrieval

Why is ML needed now?
§ Modern (web) systems use a great number of features:

§ Arbitrary useful features – not a single unified model
§ Log frequency of query word in anchor text?
§ Query word in color on page?
§ # of images on page?
§ # of (out) links on page?
§ PageRank of page?
§ URL length?
§ URL contains “~”?
§ Page edit recency?
§ Page loading speed

§ The New York Times in 2008-06-03 quoted Amit Singhal as
saying Google was using over 200 such features (“signals”) –
so it’s sure to be over 500 today. J

Introduction to Information Retrieval

Simple example:
Using classification for ad hoc IR
§ Collect a training corpus of (q, d, r) triples

§ Relevance r is here binary (but may be multiclass, with 3–7 values)

§ Query-Document pair is represented by a feature vector
§ x = (α, ω) α is cosine similarity, ω is minimum query window size

§ ω is the the shortest text span that includes all query words
§ Query term proximity is an important new weighting factor

§ Train a machine learning model to predict the class r of a document-
query pair

Sec. 15.4.1

Introduction to Information Retrieval

Simple example:
Using classification for ad hoc IR

§ A linear score function is then
Score(d, q) = Score(α, ω) = aα + bω + c

§ And the linear classifier is
Decide relevant if Score(d, q) > θ

§ … just like when we were doing text classification

Sec. 15.4.1

Introduction to Information Retrieval

Simple example:
Using classification for ad hoc IR

0
2 3 4 5

0.05

0.025

co
sin

e
sc

or
e
a

Term proximity w

R
R

R

R

R R
R

R
R

R
R

N

N

N

N

N

N

N
N

N

N

Sec. 15.4.1

Decision surface

Introduction to Information Retrieval

More complex example of using classification for
search ranking [Nallapati 2004]

§ We can generalize this to classifier functions over
more features

§ We can use other methods for learning the linear
classifier weights

Introduction to Information Retrieval

An SVM classifier for information retrieval
[Nallapati 2004]

§ Let relevance score g(r|d,q) = w�f(d,q) + b
§ Uses SVM: want g(r|d,q) ≤ −1 for nonrelevant

documents and g(r|d,q) ≥ 1 for relevant documents
§ SVM testing: decide relevant iff g(r|d,q) ≥ 0

§ Features are not word presence features (how would you
deal with query words not in your training data?) but
scores like the summed (log) tf of all query terms

§ Unbalanced data (which can result in trivial always-say-
nonrelevant classifiers) is dealt with by undersampling
nonrelevant documents during training (just take some at
random)

Introduction to Information Retrieval

An SVM classifier for information retrieval
[Nallapati 2004]

§ Experiments:
§ 4 TREC data sets
§ Comparisons with Lemur, a state-of-the-art open source IR

engine (Language Model (LM)-based – see IIR ch. 12)
§ Linear kernel normally best or almost as good as quadratic

kernel, and so used in reported results
§ 6 features, all variants of tf, idf, and tf.idf scores

Introduction to Information Retrieval

An SVM classifier for information retrieval
[Nallapati 2004]

Train \ Test Disk 3 Disk 4-5 WT10G (web)

TREC Disk 3 Lemur 0.1785 0.2503 0.2666

SVM 0.1728 0.2432 0.2750

Disk 4-5 Lemur 0.1773 0.2516 0.2656

SVM 0.1646 0.2355 0.2675

§ At best the results are about equal to Lemur
§ Actually a little bit below

§ Paper’s advertisement: Easy to add more features
§ This is illustrated on a homepage finding task on

WT10G:
§ Baseline Lemur 52% success@10, baseline SVM 58%
§ SVM with URL-depth, and in-link features: 78% success@10

Introduction to Information Retrieval

“Learning to rank”
§ Classification probably isn’t the right way to think

about approaching ad hoc IR:
§ Classification problems: Map to an unordered set of classes
§ Regression problems: Map to a real value [See PA3]
§ Ordinal regression (or “ranking”) problems: Map to an

ordered set of classes
§ A fairly obscure sub-branch of statistics, but what we want here

§ This formulation gives extra power:
§ Relations between relevance levels are modeled
§ Documents are good versus other documents for a query

given collection; not an absolute scale of goodness

Sec. 15.4.2

Introduction to Information Retrieval

“Learning to rank”
§ Assume a number of categories C of relevance exist

§ These are totally ordered: c1 < c2 < … < cJ

§ This is the ordinal regression setup
§ Assume training data is available consisting of document-

query pairs (d, q) represented as feature vectors xi with
relevance ranking ci

Introduction to Information Retrieval

Algorithms used for ranking in search
§ Support Vector Machines (Vapnik, 1995)

§ Adapted to ranking: Ranking SVM (Joachims 2002)

§ Neural Nets: RankNet (Burges et al., 2006)
§ Tree Ensembles

§ Random Forests (Breiman and Schapire, 2001)
§ Boosted Decision Trees

§ Multiple Additive Regression Trees (Friedman, 1999)
§ Gradient-boosted decision trees: LambdaMART (Burges, 2010)
§ Used by all search engines? AltaVista, Yahoo!, Bing, Yandex, …

§ All top teams in the 2010 Yahoo! Learning to Rank
Challenge used combinations with Tree Ensembles!

Introduction to Information Retrieval

Yahoo! Learning to Rank Challenge
(Chapelle and Chang, 2011)
§ Yahoo! Webscope dataset : 36,251 queries, 883k

documents, 700 features, 5 ranking levels
§ Ratings: Perfect (navigational), Excellent, Good, Fair, Bad
§ Real web data from U.S. and “an Asian country”
§ set-1: 473,134 feature vectors; 519 features; 19,944 queries
§ set-2: 34,815 feature vectors; 596 features; 1,266 queries

§ Winner (Burges et al.) was linear combo of 12 models:
§ 8 Tree Ensembles (LambdaMART)
§ 2 LambdaRank Neural Nets
§ 2 Logistic regression models

Introduction to Information Retrieval

Regression trees
§ Decision trees can predict a real value

§ They’re then often called “regression trees”

§ The value of a leaf node is the mean of all instances
at the leaf 𝛾" = 𝑓 𝑥& = '𝑥&

§ Splitting criterion: Standard Deviation Reduction
§ Choose split value to minimize the variance (standard

deviation 𝑆𝐷) of the values in each subset 𝑆& of 𝑆 induced
by split 𝐴 (normally just a binary split for easy search):
§ 𝑆𝐷𝑅(𝐴, 𝑆) = 𝑆𝐷 𝑆 − ∑&

|23|
2
𝑆𝐷(𝑆&)

§ 𝑆𝐷 = ∑&(𝑦& − 𝑓(𝑥&))5

§ Termination: cutoff on SD or #examples or tree depth

Introduction to Information Retrieval

Training a regression tree
§ The algorithm searches for split variables and split

points, x1 and v1 so as to minimize the predicted
error, i.e., ∑&(𝑦& − 𝑓(𝑥&))5.

Introduction to Information Retrieval

§ You can grow tree till 0 error (if no identical points
with different scores)

§ 3d e.g.: http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Introduction to Information Retrieval

The concept of boosting
§ Motivating question:

§ Can we use individually weak machine learning classifiers
to build a high-accuracy classification system?

§ Classic approach (AdaBoost)
§ Learn a small decision tree (often a 1-split decision stump)
§ It will get the biggest split in the data right
§ Repeat:

§ Upweight examples it gets wrong;
§ Downweight examples it gets right
§ Learn another small decision tree on that reweighted data

§ Classify with weighted vote of all trees
§ Weight trees by individual accuracy

Introduction to Information Retrieval

Towards gradient boosting:
Function estimation
§ Want: a function 𝐹∗(𝑥) that maps x to y, s.t. the

expected value of some loss function L(y, F(x)) is
minimized:
§ 𝐹∗(𝒙) = argmin? 𝒙 𝔼A,𝒙𝐿(𝑦, 𝐹 𝒙)

§ Boosting approximates 𝐹∗(𝑥) by an additive
expansion
§ 𝐹 𝒙 = ∑CDEF 𝛽Cℎ(𝒙; 𝒂C)

§ where h(x; a) are simple functions of x with
parameters a = {a1, a2, …, an} defining the function h,
and the β are weighting coefficients

Introduction to Information Retrieval

Finding parameters
§ Function parameters are iteratively fit to the training

data:
§ Set F0(x) = initial guess (or zero)
§ For each m = 1, 2, …, M

§ 𝒂C = argmin𝒂 ∑& 𝐿(𝑦&, 𝐹CKE 𝒙& + 𝛽ℎ 𝒙&, 𝒂)
§ 𝐹C 𝒙 = 𝐹CKE 𝒙& + 𝛽ℎ 𝒙&, 𝒂

§ You successively estimate and add a new tree to the
sum

§ You never go back to revisit past decisions

Introduction to Information Retrieval

Finding parameters
§ Gradient boosting approximately achieves this for

any differentiable loss function
§ Fit the function h(x; a) by least squares

§ 𝒂C = argminM ∑&[O𝑦&C − ℎ(𝒙&, 𝒂)]5

§ to the “pseudo-residuals” (deviation from desired scores)

§ O𝑦&C = − QR(A3,? 𝒙𝒊)
Q?(𝒙3) ? 𝒙 D?TUV(𝒙)

§ Whatever the loss function, gradient boosting
simplifies the problem to least squares estimation!!!
§ We can take a gradient (Newton) step to improve model

Introduction to Information Retrieval

Gradient tree boosting
§ Gradient tree boosting applies this approach on

functions h(x; a) which are small regression trees
§ The trees used normally have 1–8 splits only
§ Sometimes stumps do best!
§ The allowed depth of the tree controls the feature

interaction order of model (do you allow feature pair
conjunctions, feature triple conjunctions, etc.?)

Introduction to Information Retrieval

Learning a gradient-boosted regression
tree
§ First, learn the simplest predictor that predicts a

constant value that minimizes the error on the
training data

Introduction to Information Retrieval

Learning a gradient-boosted regression
tree
§ We want to find value 𝛾"C for root node of tree

Introduction to Information Retrieval

Learning a gradient-boosted regression
tree
§ We split root node based on least squares criterion

and build a tree predicting “pseudo-residuals”

Introduction to Information Retrieval

Learning a gradient-boosted regression
tree
§ Then another tree is added to fit the actual “pseudo-

residuals” of the first tree

Introduction to Information Retrieval

Multiple Additive Regression Trees
(MART) [Friedman 1999]

Introduction to Information Retrieval

Historical path to LambdaMART:
via RankNet (a neural net ranker)
§ Have differentiable function with model parameters w:

§ 𝒙& → 𝑓 𝒙;𝒘 = 𝑠&
§ For query q, learn probability of different ranking class

for documents 𝑑& ≻ 𝑑\ via:

§ 𝑃&\ = 𝑃 𝑑& ≻ 𝑑\ = E

E^_U`(a3Uab)

§ Cost function calculates cross entropy loss:
§ 𝐶 = −d𝑃&\ log𝑃&\ − (1 − d𝑃&\) log(1 −𝑃&\)

§ Where 𝑃&\ is the model probability; d𝑃&\ the actual
probability (0 or 1 for categorical judgments)

Introduction to Information Retrieval

RankNet (Burges 2010)
§ Combining these equations gives

§ 𝐶 = E
5
1 − 𝑆&\ 𝜎 𝑠& − 𝑠\ + log 1 + 𝑒Kj k3Kkb

§ where, for a given query, 𝑆&\ ∈ 0,+1,−1
1 if di is more relevant than dj; –1 if the reverse, and
0 if the they have the same label

§
Qn
Qk3

= 𝜎 E
5
1 − 𝑆&\ − E

E^_`(a3Uab)
= − Qn

Qkb

Introduction to Information Retrieval

RankNet lambdas
§ The crucial part of the update is

§ 𝜆&\describes the desired change of scores for the pair
of documents di and dj

§ The sum of all λij ’s and λji ’s of a query-doc vector xi
w.r.t. all other differently labelled documents for q is

§ λi is (sort of) a gradient of the pairwise loss of vector xi

Introduction to Information Retrieval

RankNet lambdas (Burges 2010)
§ (a) is the perfect ranking, (b) is a ranking with 10 pairwise

errors, (c) is a ranking with 8 pairwise errors. Each blue arrow
represents the λi for each query-document vector xi

Introduction to Information Retrieval

RankNet lambdas (Burges 2010)
§ Problem: RankNet is based on pairwise error, while modern IR

measures emphasize higher ranking positions. Red arrows
show better λ’s for modern IR, esp. web search.

Introduction to Information Retrieval

From RankNet to LambdaRank
§ Rather than working with pairwise ranking errors,

scale by effect a change has on NDCG
§ Idea: Multiply λ’s by |∆Z|, the difference of an IR

measure when di and dj are swapped
§ E.g. |∆NDCG| is the change in NDCG when swapping

di and dj giving:

§ 𝜆&\ =
Qn(k3Kkb)

Qk3
= Kj

E^_`(a3Uab)
∆NDCG

§ Burges et al. “prove” (partly theory, partly empirical)
that this change is sufficient for model to optimize
NDCG

Introduction to Information Retrieval

From LambdaRank to LambdaMART
§ LambdaRank models gradients
§ MART can be trained with gradients (“gradient

boosting”)
§ Combine both to get LambdaMART

§ MART with specified gradients and optimization step

Introduction to Information Retrieval

LambdaMART algorithm

Rlk is data items at leaf node l

Introduction to Information Retrieval

Yahoo! Learning to rank challenge
§ Goal was to validate learning to rank methods on a

large, “real” web search problem
§ Previous work was mainly driven by LETOR datasets

§ Great as first public learning-to-rank data
§ Small: 10s of features, 100s of queries, 10k’s of docs

§ Only feature vectors released
§ Not URLs, queries, nor feature descriptions

§ Wanting to keep privacy and proprietary info safe

§ But included web graph features, click features, page
freshness and page classification features as well as text
match features

Introduction to Information Retrieval

Burges et al. (2011) entry systems

ERR = Expected reciprocal rank; see Chapelle and Chang (2011)

Introduction to Information Retrieval

They didn’t need to combine so many

Introduction to Information Retrieval

All good systems performed almost
identically, trained on the same features

It’s not very clear that you need to use LambdaMART.
Methods like (pairwise) Logistic Rank seem to do just fine.
But use of trees seems to be de rigeur at search engine companies.
So maybe they’re a little better on big data?

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART
§ https://github.com/dmlc/xgboost/tree/master/demo/rank
§ git clone https://github.com/dmlc/xgboost.git
§ brew install unrar #somehow get unrar if don’t have it
§ cd gboost/demo/rank
§ ./wgetdata.sh # gets one of the LETOR datasets
§ python notebook

https://github.com/dmlc/xgboost/tree/master/demo/rank

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

Introduction to Information Retrieval

http://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking

http://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking

Introduction to Information Retrieval

Summary
§ The idea of learning ranking functions has been around

for about 20 years
§ But only more recently have ML knowledge, availability

of training datasets, a rich space of features, and massive
computation come together to make this a hot research
area

§ It’s too early to give a definitive statement on what
methods are best in this area

§ But machine-learned ranking over many features now
easily beats traditional hand-designed ranking functions
in comparative evaluations [in part by using the hand-designed functions as features!]

§ There is every reason to think that the importance of
machine learning in IR will grow in the future.

Introduction to Information Retrieval

Resources
§ IIR secs 6.1.2–3 and 15.4
§ Nallapati, R. Discriminative models for information

retrieval. SIGIR 2004.
§ LETOR benchmark datasets

§ Website with data, links to papers, benchmarks, etc.
§ http://research.microsoft.com/users/LETOR/
§ Everything you need to start research in this area! But smallish.

§ C. J. C. Burges. From RankNet to LambdaRank to
LambdaMART: An Overview. Microsoft TR 2010.

§ O. Chapelle and Y. Chang. Yahoo! Learning to Rank
Challenge Overview. JMLR Proceedings 2011.

