Introduction to

Introduction to Information Retrieval Ch. 5

Today

[Brutus | — [1] 2] 4] 11[31]45]173 | 174]

[Camsar | — [1] 2] &] 5] 6]16] 57[132]... |

[CaLPURNIA | — [2] 31 [54] 101 |

= Collection statistics in more detail (with RCV1)
= How big will the dictionary and postings be?

= Dictionary compression

= Postings compression

Introduction to Information Retrieval Ch. 5

Why compression for inverted indexes?

= Dictionary
= Make it small enough to keep in main memory
= Make it so small that you can keep some postings lists in
main memory too
= Postings file(s)
= Reduce disk space needed
= Decrease time needed to read postings lists from disk
= Large search engines keep a significant part of the postings

in memory.
= Compression lets you keep more in memory

= We will devise various IR-specific compression schemes

Introduction to Information Retrieval

Last lecture — index construction

= Sort-based indexing
= Naive in-memory inversion
= Blocked Sort-Based Indexing (BSBI)
= Merge sort is effective for hard disk—based sorting (avoid seeks!)
= Single-Pass In-Memory Indexing (SPIMI)
= No global dictionary

= Generate separate dictionary for each block
= Don’t sort postings
= Accumulate postings in postings lists as they occur

= Distributed indexing using MapReduce
= Dynamic indexing: Multiple indices, logarithmic merge

Introduction to Information Retrieval Ch. 5

Why compression (in general)?

= Use less disk space
= Save a little money; give users more space
= Keep more stuff in memory
= Increases speed
= Increase speed of data transfer from disk to memory

= [read compressed data | decompress] is faster than
[read uncompressed data]

= Premise: Decompression algorithms are fast
= True of the decompression algorithms we use

Recall Reuters RCV1
= symbol statistic value
=N documents 800,000
=L avg. # tokens per doc 200
=M terms (= word types) ~400,000
= avg. # bytes per token 6
(incl. spaces/punct.)
= avg. # bytes per token 4.5
(without spaces/punct.)
= avg. # bytes per term 7.5
= non-positional postings 100,000,000

Introduction to Information Retrieval

Index parameters vs. what we index
(details /IR Table 5.1, p.80)

word types (terms) | non-positional positional postings
postings

dictionary non-positional index positional index

Size A% cumul Size (K) A cumul Size (K) A cumul
(K) % % % % %

Unfiltered 484 109,971 197,879

No numbers 474 2 2 100680 -8 -8 179,158 -9 9
Case folding 392 17 19 96969 -3 -12 179,158 0O 9
30 stopwords 391 -0 -19 83390 -14 24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94517 47 52
stemming 32 17 33 63812 -4 42 94517 0 52
Exercise: give intuitions for all the ‘0’ entries. Why do some
zero entries correspond to big deltas in other columns? |

Introduction to Information Retrieval Sec. 5.1

Vocabulary size vs. collection size

= How big is the term vocabulary?
= That is, how many distinct words are there?
= Can we assume an upper bound?
= Not really: At least 702 = 1037 different words of length 20
= |n practice, the vocabulary will keep growing with the
collection size
= Especially with Unicode ©

Heaps’ Law Fig 5.1 p81

For RCV1, the dashed line

logioM = 0.49 log;oT + 1.64

is the best least squares fit. °
Thus, M = 101647049 50 k = -
10164= 44 and b = 0.49.

logioM

Good empirical fit for
Reuters RCV1!

For first 1,000,020 tokens,
law predicts 38,323 terms;) T T T T
actually, 38,365 terms ogto T

Introduction to Information Retrieval Sec. 5.1

Lossless vs. lossy compression

= Lossless compression: All information is preserved.
= What we mostly doin IR.

= Lossy compression: Discard some information

= Several of the preprocessing steps can be viewed as
lossy compression: case folding, stop words,
stemming, number elimination.

= Chapter 7: Prune postings entries that are unlikely to
turn up in the top k list for any query.

= Almost no loss of quality in top k list.

Introduction to Information Retrieval Sec. 5.1

Vocabulary size vs. collection size

= Heaps’ law: M = kT?

= M is the size of the vocabulary, T is the number of
tokens in the collection

= Typical values: 30 < k<100and b= 0.5

= In a log-log plot of vocabulary size M vs. T, Heaps’
law predicts a line with slope about %

= |tis the simplest possible (linear) relationship between the
two in log-log space
= logM=logk+blogT
= An empirical finding (“empirical law”)

Exercises

= What is the effect of including spelling errors, vs.
automatically correcting spelling errors on Heaps’
law?

= Compute the vocabulary size M for this scenario:

= Looking at a collection of web pages, you find that there
are 3000 different terms in the first 10,000 tokens and
30,000 different terms in the first 1,000,000 tokens.

= Assume a search engine indexes a total of 20,000,000,000
(2 X 1010) pages, containing 200 tokens on average

= What is the size of the vocabulary of the indexed collection
as predicted by Heaps’ law?

Introduction to Information Retrieval Sec. 5.1

Zipf’s law

= Heaps’ law gives the vocabulary size in collections.
= We also study the relative frequencies of terms.

= |n natural language, there are a few very frequent
terms and very many very rare terms.

= Zipf’s law: The ith most frequent term has frequency
proportional to 1/i .

= cf;x 1/i = K/i where K is a normalizing constant

= cf;is collection frequency: the number of
occurrences of the term t; in the collection.

Introduction to Information Retrieval Sec. 5.1

Zipf’s law for Reuters RCV1

log10cf

o - L
T T T T T T T T
0 1 2 3 4 5 6 7
log10 rank 15
Introduction to Information Retrieval Sec. 5.2

DICTIONARY COMPRESSION

Introduction to Information Retrieval Sec. 5.1

Zipf consequences

= |f the most frequent term (the) occurs cf; times
= then the second most frequent term (of) occurs cf;/2 times
= the third most frequent term (and) occurs cf;/3 times ...
= Equivalent: cf; = K/i where K is a normalizing factor,
o]

= log cfi=log K - log i
= Linear relationship between log cf; and log i

= Another power law relationship

Introduction to Information Retrieval Ch. 5

Compression

= Now, we will consider compressing the space
for the dictionary and postings. We'll do:

= Basic Boolean index only
= No study of positional indexes, etc.

= But these ideas can be extended

= We will consider compression schemes

Introduction to Information Retrieval Sec. 5.2

Why compress the dictionary?

= Search begins with the dictionary
= We want to keep it in memory

= Memory footprint competition with other
applications

= Embedded/mobile devices may have very little
memory

= Even if the dictionary isn’t in memory, we want it to
be small for a fast search startup time

= So, compressing the dictionary is important

Introduction to Information Retrieval Sec. 5.2

Dictionary storage — naive version

= Array of fixed-width entries
= ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms |Freq. Postings ptr.

a 656,265
o—]

——Jaachen |65 _
——Jzulu 221 B

N/
‘ 20 bytes ‘ ‘ 4 bytes each ‘

Dictionary search
structure

Introduction to Information Retrieval Sec. 5.2

Compressing the term list:
Dictionary-as-a-String

sStore dictionary as a (long) string of characters:
=Pointer to next word shows end of current word
=Hope to save up to 60% of dictionary space

‘systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo.... ‘

Freq. Postings ptrl Term ptr. J

33
29 -

Total string length =
400K x 8B =3.2MB

44 ointers resolve 3.2M
126 ositions: log,3.2M =
22bits = 3bytes
Blocking

= Store pointers to every kth term string.
= Example below: k=4.
= Need to store term lengths (1 extra byte)

‘ ... Tsystile9syzygetic8syzygialosyzygy 1 1szaibelyite8szczecin9szomo. ...

Postings ptr| Term ptr.

P 1} Save 9 bytes Lose 4 bytes on
4 on3

: term lengths.
126 J pointers. R

23

Introduction to Information Retrieval Sec. 5.2

Fixed-width terms are wasteful

= Most of the bytes in the Term column are wasted —
we allot 20 bytes for 1 letter terms.

= And we still can’t handle supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

= Written English averages ~4.5 characters/word.

= Exercise: Why is/isn’t this the number to use for estimating
the dictionary size?

= Ave. dictionary word in English: ~8 characters
= How do we use ~8 characters per dictionary term?

= Short words dominate token counts but not type

average.
Introduction to Information Retrieval Sec. 5.2

Space for dictionary as a string

= 4 bytes per term for Freq.

= 4 bytes per term for pointer to Postings. bytes/term,

} Now avg. 11
not 20.

= 3 bytes per term pointer
= Avg. 8 bytes per term in term string
= 400K terms x 19 = 7.6 MB (against 11.2MB for fixed

width)
Introduction to Information Retrieval Sec. 5.2

Blocking Net Gains

= Example for block size k = 4

= Where we used 3 bytes/pointer without blocking
= 3x4=12bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Question: Why not go with larger k?

Introduction to Information Retrieval Sec. 5.2

Dictionary search without blocking

= Assuming each
dictionary term equally
likely in query (not really
so in practice!), average
number of comparisons
= (1+2-2+4-3+4)/8 ~2.6

Exercise: what if the frequencies
of query terms were non-uniform

but known, how would you
structure the dictionary search
tree?

Sec. 5.2

Introduction to Information Retrieval

Exercises

= Estimate the space usage (and savings compared to
7.6 MB) with blocking, for block sizes of k = 4, 8 and

16.

= Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for block

sizes of k=4, 8 and 16.

Introduction to Information Retrieval

Sec. 5.2

Dictionary search with blocking

(rox) (o)

JOB @ @ @

= Binary search down to 4-term block;
= Then linear search through terms in block.

= Blocks of 4 (binary tree), avg. =
(1+2-2+2-3+2-4+5)/8 = 3 compares

Introduction to Information Retrieval Sec. 5.2

Front coding

= Front-coding:

= Sorted words commonly have long common prefix — store
differences only

= (for last k-1 in a block of k)

8automata8automateSautomaticlOautomation

—8automat*al 0e20ic30ion

Extra length

Encodes prefix automat
beyond automat.

Begins to resemble general string compression.

Sec. 5.2

Introduction to Information Retrieval

RCV1 dictionary compression summary

Introduction to Information Retrieval Sec. 5.3

A i
11.2

Fixed width
Dictionary-as-String with pointers to every term 7.6
+ blocking, k=4 7.1
5.9

+ blocking + front coding

POSTINGS COMPRESSION

Introduction to Information Retrieval Sec. 5.3

Postings compression

= The postings file is much larger than the dictionary,
factor of at least 10, often over 100 times larger

= Key desideratum: store each posting compactly.
= A posting for our purposes is a doclD.

= For Reuters (800,000 documents), we would use 32
bits per docID when using 4-byte integers.

= Alternatively, we can use log; 800,000 = 20 bits per
doclD.

= Qur goal: use far fewer than 20 bits per docID.

Introduction to Information Retrieval Sec. 5.3

Gap encoding of postings file entries

= We store the list of docs containing a term in
increasing order of docID.
= computer: 33,47,154,159,202 ...

ffices to store gaps.

= 33,14,10 3.
= Hope: most gaps can be encoded/stored with far
fewer than 20 bits.
= Especially for common words

Introduction to Information Retrieval Sec. 5.3

Variable length encoding

= Aim:
= For arachnocentric, we will use ~20 bits/gap entry.
= For the, we will use ~1 bit/gap entry.
= |f the average gap for a term is G, we want to use
~log,G bits/gap entry.
= Key challenge: encode every integer (gap) with about
as few bits as needed for that integer.
= This requires a variable length encoding
= Variable length codes achieve this by using short
codes for small numbers

Introduction to Information Retrieval Sec. 5.3

Postings: two conflicting forces

= Aterm like arachnocentric occurs in maybe one doc
out of a million — we would like to store this posting
using logz 1M = 20 bits.
= Aterm like the occurs in virtually every doc, so 20
bits/posting = 2MB is too expensive.
= Prefer 0/1 bitmap vector in this case (=100K)

Introduction to Information Retrieval Sec. 5.3

Three postings entries

encoding postings list

THE doclDs 283042 283043 283044 283045 ...
gaps 1 1 1
COMPUTER doclDs 283047 283154 283159 283202 ...
gaps 107 5 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100

Introduction to Information Retrieval

Unary code

= Represent n as n 1s with a final 0.

= Unary code for 3 is 1110.

= Unary code for 40 is
1111112122111112122211112122322111111332111110.
= Unary code for 80 is:

111111111111111111111111111121111111111111111
1111111111111111111111111111111111110

= This doesn’t look promising, but....
= Optimal if P(n) =2
= We can use it as part of our solution

Introduction to Information Retrieval Sec. 5.3

Gamma codes

= We can compress better with bit-level codes
= The Gamma code is the best known of these.
= Represent a gap G as a pair length and offset
= offsetis G in binary, with the leading bit cut off
= For example 13 - 1101 -> 101
= length is the length of offset
= For 13 (offset 101), this is 3.
= We encode length with unary code: 1110.
= Gamma code of 13 is the concatenation of length
and offset: 1110101

Introduction to Information Retrieval

Reminder: bitwise operations

= For compression, you need to use bitwise operators

CS107 Schedule Assignments Labs Gradebook Resources Getting Help

Computer Organization & Systems

= Python (and most everything else):
= & bitwise and; | bitwise or; * bitwise xor; ~ ones complement
= << left shift bits, >> right shift; LACKS >>> zero fill right shift
= Recipes:
= Extract 7 bits: a & 0x7f00 >> 8 ; if take high-order bit add: & 0x7f

= Combine 3 5-bit numbers: a | (b<<5) | (c<<10)
= Lookup tables rather than decoding can be faster, yet still small

Introduction to Information Retrieval Sec. 5.3

Gamma seldom used in practice

= Machines have word boundaries — 8, 16, 32, 64 bits
= Operations that cross word boundaries are slower
= Compressing and manipulating at the granularity of
bits can be too slow

= All modern practice is to use byte or word aligned
codes

= Variable byte encoding is a faster, conceptually simpler
compression scheme, with decent compression

Introduction to Information Retrieval Sec. 5.3

Gamma code examples
[number _[length ______[offset _Jycode |
0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Gamma code properties

= Gis encoded using 2 |_Iog G|+ 1 bits
= Length of offset is |_Iog G bits
= Length of length is Uog GJ +1bits
= All gamma codes have an odd number of bits
= Almost within a factor of 2 of best possible, log, G

= Gamma code is uniquely prefix-decodable, like VB
= Gamma code can be used for any distribution

= Optimal for P(n) ~ 1/(2n2)
= Gamma code is parameter-free

Introduction to Information Retrieval Sec. 5.3

Variable Byte (VB) codes

= For a gap value G, we want to use close to the fewest
bytes needed to hold log, G bits

Begin with one byte to store G and dedicate 1 bit in it
to be a continuation bit ¢

= |f G <127, binary-encode it in the 7 available bits and
setc=1

Else encode G’s lower-order 7 bits and then use
additional bytes to encode the higher order bits
using the same algorithm

= At the end set the continuation bit of the last byte to
1 (c =1) — and for the other bytes c = 0. 0

Introduction to Information Retrieval Sec. 5.3

Example
[dociDs __[s24 820 [215406
gaps 5 214577
VB code 00000110 10000101 00001101
10111000 00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte. "

Other variable unit codes

= Variable byte codes are used by many real systems

= Good low-tech blend of variable-length coding and
sensitivity to computer memory alignment matches

= Byte alignment wastes space if you have many small
gaps — as gap encoding often makes
= More modern work mainly uses the ideas:
= Be word aligned (32 or 64 bits; even faster)
= Encode several gaps at the same time

= Often assume a maximum gap size, perhaps with an
escape

Introduction to Information Retrieval

Simple-9 [Anh & Moffat, 2004]

A word-aligned, multiple number encoding scheme
How can we store several numbers in 32 bits with a format selector?

Introduction to Information Retrieval Sec. 5.3

RCV1 compression
[Datastructre | SizeinB]

dictionary, fixed-width 1.2
dictionary, term pointers into string 76
with blocking, k = 4 741
with blocking & front coding 59
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, y—encoded 101.0

Introduction to Information Retrieval

Group Variable Integer code

= Used by Google around turn of millennium....
= Jeff Dean, keynote at WSDM 2009 and presentations at CS276
= Encodes 4 integers in blocks of size 5-17 bytes

= First byte: four 2-bit binary length fields

= LGN, Le{1,2,3,4}

= Then, L1+L2+L3+L4 bytes (between 4-16) hold 4 numbers
= Each number can use 8/16/24/32 bits. Max gap length ~4 billion

= |t was suggested that this was about twice as fast as VB

encoding

= Decoding gaps is much simpler — no bit masking
= First byte can be decoded with lookup table or switch

46

Introduction to Information Retrieval

Simple9 Encoding Scheme [Anh & Moffat, 2004]

= Encoding block: 4 bytes (32 bits)

= Most significant nibble (4 bits) describe the layout of the 28
other bits as follows: BT

n*bs28

.
5

a single 28-bit number

two 14-bit numbers

three 9-bit numbers (and one spare bit)
four 7-bit numbers

five 5-bit numbers (and three spare bits)
seven 4-bit numbers

nine 3-bit numbers (and one spare bit)
fourteen two-bit numbers

= 8:twenty-eight one-bit numbers

= Simplel6 is a variant with 5 additional (uneven) configurations
= Efficiently decoded with hand-coded decoder, using bit masks

= Extended Simple Family —idea applies to 64-bit words, etc.

VN UA WNE

48

Introduction to Information Retrieval Sec. 5.3

Index compression summary

= We can now create an index for highly efficient
Boolean retrieval that is very space efficient
= Only 4% of the total size of the collection

= Only 10-15% of the total size of the text in the
collection

= We've ignored positional information
= Hence, space savings are less for indexes used in
practice
= But techniques substantially the same

Introduction to Information Retrieval Ch. 5

Resources for today’s lecture

= J/IR5
= MG3.3,3.4.
= F. Scholer, H.E. Williams and J. Zobel. 2002.
Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.
= Variable byte codes
= V. N. Anh and A. Moffat. 2005. Inverted Index
Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151-166.
= Word aligned codes

