Introduction to Information Retrieval

Lecture 6 — | introduced a bug

= |n my anxiety to avoid taking the log of zero, |
rewrote

w _Ji+logith, if th, >0
La o, otherwise

Introduction to

as {Iogw (A+tfy), iftf,>0

L 0, otherwise

In fact this was unnecessary, since the zero case is treated
specially above; net the FIRST version above is right.

Introduction to Information Retrieval Ch. 6
Recap: tf-idf weighting Recap: Queries as vectors
* The tf-idf weight of a term is the product of its tf = Key idea 1: Do the same for queries: represent them
weight and its idf weight. as vectors in the space
_ = Key idea 2: Rank documents according to their
W[,d - (1+ IOglo tft,d) x IOglo(N /dft) proximity to the query in this space

= proximity = similarity of vectors
= Best known weighting scheme in information retrieval P ¥ ¥

= Increases with the number of occurrences within a
document

= |ncreases with the rarity of the term in the collection

Introduction to Information Retrieval Ch. 6 Introduction to Information Retrieval Ch. 7
Recap: cosine(query,document) This lecture
[Dot product| \JUni‘t vectors | = Speeding up vector space ranking
o \quI g d [‘lqidi ®* Putting together a complete search
cos(q,d) = a0 =E°§‘=W system
d Zizlqi Zizldi

= Will require learning about a number of
miscellaneous topics and heuristics

cos(q,d) is the cosine similarity of gand d ... o, _
equivalently, the cosine of the angle between g and d.

Introduction to Information Retrieval Sec. 6.3.3 Introduction to Information Retrieval Sec. 7.1

Computing cosine scores Efficient cosine ranking
COSINESCORE(q) = Find the K docs in the collection “nearest” to the
1 float Scores[N] =0 query = K largest query-doc cosines.
2 float Length[N] = Efficient ranking:
3 for each query term ¢t . . . -
. . = Computing a single cosine efficiently.
4 do calculate we 4 and fetch postings list for t]) .
. . . . = Choosing the K largest cosine values efficiently.
5 for each pair(d,tf;) in postings list o))
= Can we do this without computing all N cosines?
6 do Scores[d]+ = wy g X Wy 4
7 Read the array Length
8 for each d
9 do Scores[d] = Scores|[d]/Length|d]
10 return Top K components of Scores|]
Efficient cosine ranking Special case —unweighted queries
= What we’re doing in effect: solving the K-nearest = No weighting on query terms
neighbor problem for a query vector = Assume each query term occurs only once
* In general, we do not know how to do this efficiently = Then for ranking, don’t need to normalize query
for high-dimensional spaces vector
" Butitis solvable for short queries, and standard = Slight simplification of algorithm from Lecture 6
indexes support this well
Computing the K largest cosines:
selection vs. sorting Use heap for selecting top K
= Typically we want to retrieve the top K docs (in the = Binary tree in which each node’s value > the values
cosine ranking for the query) of children
= not to totally order all docs in the collection = Takes 2J operations to construct, then each of K
= Can we pick off docs with K highest cosines? “winners” read off in 2log J steps.
= LetJ = number of docs with nonzero cosines = For J=1M, K=100, this is about 10% of the cost of

= We seek the K best of these J sorting.

Introduction to Information Retrieval Sec. 7.1.1 Introduction to Information Retrieval Sec. 7.1.1

Bottlenecks Cosine similarity is only a proxy
= Primary computational bottleneck in scoring: cosine = User has a task and a query formulation
computation = Cosine matches docs to query
® Can we avoid all this computation? = Thus cosine is anyway a proxy for user happiness
® Yes, but may sometimes get it wrong = |f we get a list of K docs “close” to the top K by cosine
= a doc not in the top K may creep into the list of K measure, should be ok

output docs
= |s this such a bad thing?

Generic approach Index elimination
= Find aset A of contenders, with K< [A] << N = Basic algorithm cosine computation algorithm only
= A does not necessarily contain the top K, but has considers docs containing at least one query term
many docs from among the top K = Take this further:
= Return the top K docs in A = Only consider high-idf query terms
= Think of A as pruning non-contenders = Only consider docs containing many query terms

= The same approach is also used for other (non-
cosine) scoring functions

= Will look at several schemes following this approach

High-idf query terms only Docs containing many query terms

= For a query such as catcher in the rye = Any doc with at least one query term is a candidate

= Only accumulate scores from catcher and rye for the top K output list

= Intuition: in and the contribute little to the scores = For multi-term queries, only compute scores for docs
and so don't alter rank-ordering much containing several of the query terms

= Benefit: = Say, at least 3 out of 4

= Imposes a “soft conjunction” on queries seen on web

= Postings of low-idf terms have many docs — these (many) .
search engines (early Google)

docs get eliminated from set A of contenders
= Easy to implement in postings traversal

Introduction to Information Retrieval Sec. 7.1.2 Introduction to Information Retrieval Sec. 7.1.3

3 of 4 query terms Champion lists
= Precompute for each dictionary term t, the r docs of
w——=>[3714 [8] 16] 32] 64128 | highest weight in t’s postings
o ~ [T 4 T8 16[32 6428 | . CaIIthlsthe'champlonllstfort
N = (aka fancy list or top docs for t)
(1] 2]l 3[51813 21 34 = Note that r has to be chosen at index build time

:>| 13116132] ‘ ‘ ‘ ‘ | = Thus, it’s possible that r < K

= At query time, only compute scores for docs in the
champion list of some query term

Scores Only computed for docs 8,16 and 32. = Pick the K top-scoring docs from amongst these

Exercises Static quality scores
= How do Champion Lists relate to Index Elimination? = We want top-ranking documents to be both relevant
Can they be used together? and authoritative

= How can Champion Lists be implemented in an

inverted index? Authority is typically a query-independent property
= Note that the champion list has nothing to do with small of a document
doclDs

Relevance is being modeled by cosine scores

Examples of authority signals
= Wikipedia among websites
= Articles in certain newspapers

Quantitative

= A paper with many citations
= Many bitly’s, diggs or dekicio.us marks

= (Pagerank)

Modeling authority Net score
= Assign to each document a query-independent = Consider a simple total score combining cosine
quality score in [0,1] to each document d relevance and authority
= Denote this by g(d) = net-score(q,d) = g(d) + cosine(qg,d)
= Thus, a quantity like the number of citations is scaled = Can use some other linear combination
into [0,1] = Indeed, any function of the two “signals” of user happiness
= Exercise: suggest a formula for this. - more later

= Now we seek the top K docs by net score

Introduction to Information Retrieval Sec. 7.1.4 Introduction to Information Retrieval Sec. 7.1.4

Top K by net score — fast methods Why order postings by g(d)?
= First idea: Order all postings by g(d) = Under g(d)-ordering, top-scoring docs likely to
= Key: this is a common ordering for all postings appear early in postings traversal
= Thus, can concurrently traverse query terms’ ® In time-bound applications (say, we have to return
postings for whatever search results we can in 50 ms), this allows
= Postings intersection us to stop postings traversal early
= Cosine score computation = Short of computing scores for all docs in postings

= Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Champion lists in g(d)-ordering High and low lists
= Can combine champion lists with g(d)-ordering = For each term, we maintain two postings lists called
= Maintain for each term a champion list of the r docs high and low
with highest g(d) + tf-idf,, = Think of high as the champion list
= Seek top-K results from only the docs in these = When traversing postings on a query, only traverse
champion lists hlgh lists first

= If we get more than K docs, select the top K and stop
= Else proceed to get docs from the low lists

= Can be used even for simple cosine scores, without
global quality g(d)

= A means for segmenting index into two tiers

Impact-ordered postings 1. Early termination

= We only want to compute scores for docs for which = When traversing t’s postings, stop early after either
Wf, 4 is high enough = afixed number of r docs

= We sort each postings list by wf, 4 * wf, 4 drops below some threshold

= Now: not all postings in a common order! = Take the union of the resulting sets of docs

* How do we compute scores in order to pick off top K? * One from the postings of each query term

= Two ideas follow = Compute only the scores for docs in this union

Introduction to Information Retrieval Sec. 7.1.5 Introduction to Information Retrieval Sec. 7.1.6

2. idf-ordered terms Cluster pruning: preprocessing

® When considering the postings of query terms = Pick YN docs at random: call these leaders
= Look at them in order of decreasing idf

= For every other dOC, pre-compute nearest
= High idf terms likely to contribute most to score

= As we update score contribution from each query leader
term = Docs attached to a leader: its followers;
= Stop if doc scores relatively unchanged » ikeh!: each leader has ~ \/N followers.
= Can apply to cosine or some other net scores
Introduction to Information Retrieval Sec.7.1.6
Cluster pruning: query processing Visualization
= Process a query as follows: <."'.' ; N
. . . \ k
= Given query Q, find its nearest leader L. ° ~% >
SN .
= Seek K nearest docs from among L’s) S T
o ‘Query
followers. []
¢ (J
e '.0.
[] ‘ (]
[]) °
o0
@Leader @Follower
Why use random sampling General variants
= Fast = Have each follower attached to b1=3 (say) nearest
= Leaders reflect data distribution leaders.
= From query, find b2=4 (say) nearest leaders and their
followers.

= Can recurse on leader/follower construction.

Introduction to Information Retrieval Sec. 7.1.6 Introduction to Information Retrieval Sec. 6.1

Exercises Parametric and zone indexes

= To find the nearest leader in step 1, how many cosine = Thus far, a doc has been a sequence of terms

computations do we do? = |n fact documents have multiple parts, some with

= Why did we have VN in the first place? special semantics:

= What is the effect of the constants b1, b2 on the = Author
previous slide? = Title
= Devise an example where this is likely to fail —i.e., we * Date of publication
miss one of the K nearest docs. = Language
= Likely under random sampling. = Format
= etc.

= These constitute the metadata about a document

Fields Zone
= We sometimes wish to search by these metadata = A zone is a region of the doc that can contain an

= E.g., find docs authored by William Shakespeare in the arbitrary amount of text, e.g.,

year 1601, containing alas poor Yorick = Title
= Year = 1601 is an example of a field = Abstract
= Also, author last name = shakespeare, etc. * References ...
= Field or parametric index: postings for each field ® Build inverted indexes on zones as well to permit
value querying

= Sometimes build range trees (e.g., for dates) = E.g., “find docs with merchant in the title zone and

= Field query typically treated as conjunction matching the query gentle rain”

= (doc must be authored by shakespeare)

Introduction to Information Retrieval Sec. 7.2.1
Example zone indexes Tiered indexes
= Break postings up into a hierarchy of lists
|wi||iam.abslract|—-| 11 |—-| 121 H 1441 H 1729 | P & P 4

= Most important

| william.title H 2 l—-| 4 H 8 H 16 | = Leastimportant

= Can be done by g(d) or another measure

|Wi"iam-a“‘h°rH 2 l—'| 3 H 5 H 8 | = Inverted index thus broken up into tiers of decreasing
ﬁ importance
Encode zones in dictionary vs. postings. = thuery time use top tier unless it fails to yield K
ocs

- - - = If so drop to lower tiers
| william ’—-|2.author,2.t1tle}—-| 3.author ’—-| 4 title H 5.author |

Introduction to Information Retrieval Sec. 7.2.1 Introduction to Information Retrieval Sec. 7.2.2

Example tiered index

Query term proximity

Tier 4

car |+ Doet |4 Doc3

insuranceH Doc2 }—~ Doc3

= Free text queries: just a set of terms typed into the
query box — common on the web

= Users prefer docs in which query terms occur within
close proximity of each other

-(. . ..
[awe]] ‘ = Let w be the smallest window in a doc containing all
best Doct + Doc3
Tier 2 query terms, e.g.,
P —. = For the query strained mercy the smallest window in
the doc The quality of mercy is not strained is 4
auto *{ Doct (words)
Terd = = Would like scoring function to take this into account
uld li ing functi isi u
- ?
how

Query parsers

Aggregate scores

= Free text query from user may in fact spawn one or
more queries to the indexes, e.g., query rising

interest rates

interest rates

Run the query as a phrase query

If <K docs contain the phrase rising interest rates, run the
two phrase queries rising interest and interest rates

If we still have <K docs, run the vector space query rising

Rank matching docs by vector space scoring

= We’ve seen that score functions can combine cosine,
static quality, proximity, etc.

= How do we know the best combination?

= Some applications — expert-tuned

= |ncreasingly common: machine-learned
= See May 19t lecture

= This sequence is issued by a query parser

Introduction to Information Retrieval

Putting it all together

Sec. 7.2.4 Introduction to Information Retrieval

Resources

Documents

Parsing [userquer
Free text query parser

Linguistics

= IIR7,6.1

Results|
page

— 4
Document |Spe|| ccrrectlcnl | Sccrlng and ranking ‘
cache \ l ﬁ
Metadata in | Inexact 3 . X
zone and top K Tler.eld |nv.erted k-gram Scoring Q
fiold indexes | retriaval | POsitional index parameters [—itraining
Indexes MLR Lsft/

