Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model

Recap of lecture 5 Collection and vocabulary statistics: Heaps' and Zipf's laws Dictionary compression for Boolean indexes Dictionary string, blocks, front coding Postings compression: Gap encoding, prefix-unique codes Variable-Byte and Gamma codes collection (text, xml markup etc) 3.600.0 MB collection (text) 960.0 Term-doc incidence matrix 40.000.0 postings, uncompressed (32-bit words) 400.0 250.0 postings, uncompressed (20 bits) postings, variable byte encoded 116.0 postings, γ-encoded

odaction to injoiniation hetrievar

This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

Introduction to Information Retrieval

Ch. 6

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hite
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Introduction to Information Retrieva

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

6

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

troduction to Information Retrieva

Ch. 6

Query-document matching scores

- We need a way of assigning a score to a query/ document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

troduction to Information Retrieval

Ch. 6

Take 1: Jaccard coefficient

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Introduction to Information Retrieval

Ch.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march

Introduction to Information Retrieval

Ch. 6

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$
- . . . instead of |A ∩ B|/|A U B| (Jaccard) for length normalization.

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

itiou detion t	o Information Retrieval				Se	ec. 6.2
Ter	m-docume	ent cou	nt mat	rices	5	
	onsider the nur	nber of oc	currence	s of a t	term in	а
	Each document	is a count v	ector in N°	: a colu	mn belo	w
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeti
Antony	Antony and Cleopatra 157	Julius Caesar 73	The Tempest	Hamlet 0	Othello 0	Macbeti 0
Antony Brutus						
	157	73	0	0	0	0
Brutus	157 4	73 157	0	0 1	0	0
Brutus Caesar	157 4 232	73 157 227	0 0 0	0 1 2	0 0 1	0 0 1
Brutus Caesar Calpurnia	157 4 232 0	73 157 227 10	0 0 0	0 1 2 0	0 0 1	0 0 1 0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

troduction to Information Retriev

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR

ntroduction to Information Retrieval

Sec 6

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d}, & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• score =
$$\sum_{t \in q \cap d} (1 + \log t f_{t,d})$$

• The score is 0 if none of the query terms is present in the document.

Introduction to Information Retrieval

Sec. 6.2.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

Sec. 6.2.1

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t
 by
 10
 10

$$idf_t = \log_{10} (N/df_t)$$

 We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf

Will turn out the base of the log is immaterial.

 $idf_t = \log_{10} \left(N/df_t \right)$

There is one idf value for each term t in a collection.

itroduction to injormation ketrievi

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

22

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

Introduction to Information Retrieval

Sec. 6.2.2

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{t} f_{t,d}) \times \log_{10}(N/\mathbf{d} f_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeti
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Documents as vectors

So we have a |V|-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space
Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
These are very sparse vectors - most entries are zero.

Queries as vectors

| Key idea 1: Do the same for queries: represent them as vectors in the space
| Key idea 2: Rank documents according to their proximity to the query in this space
| proximity = similarity of vectors
| proximity ≈ inverse of distance
| Recall: We do this because we want to get away from the you' re-either-in-or-out Boolean model.
| Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity First cut: distance between two points (= distance between the end points of the two vectors) Euclidean distance? Euclidean distance is a bad idea... ... because Euclidean distance is large for vectors of different lengths.

Introduction to Information Retrieva

Sec. 6.3

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

Introduction to Information Retrieva

Sec. 6.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine (query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

Introduction to Information Retrieval

Sec. 6.

Length normalization

■ A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L_2 norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

 $\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|r|} q_i d_i}{\sqrt{\sum_{i=1}^{|r|} q_i^2} \sqrt{\sum_{i=1}^{|r|} d_i^2}}$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q},\vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

ntroduction to Information Retrievo

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

36

