Introduction to

Efficient scoring




Introduction to Information Retrieval

Today’s focus

= Retrieval — get docs matching query from inverted
index

= Scoring+ranking
= Assign a score to each doc

= Pick K highest scoring docs

= Our emphasis today will be on doing this efficiently,
rather than on the quality of the ranking



Introduction to Information Retrieval

Background

= Score computation is a large (10s of %) fraction of
the CPU work on a query
= Generally, we have a tight budget on latency (say, 250ms)
* CPU provisioning doesn’t permit exhaustively scoring
every document on every query
* Today we’ll look at ways of cutting CPU usage for

scoring, without compromising the quality of results
(much)

= Basic idea: avoid scoring docs that won’t make it into
the top K



Introduction to Information Retrieval Ch. 6

Recap: Queries as vectors

= Vector space scoring
= We have a weight for each term in each doc
" Represent queries as vectors in the space

= Rank documents according to their cosine similarity to the
guery in this space

= Or something more complex: BM25, proximity, ...
= Vector space scoring is
= Entirely query dependent
= Additive on term contributions — no conditionals etc.

= Context insensitive (no interactions between query terms)



Introduction to Information Retrieval

TAAT vs DAAT techniques

= TAAT = “Term At A Time”

= Scores for all docs computed concurrently, one query term
at a time

= DAAT = “Document At A Time”

= Total score for each doc (incl all query terms) computed,
before proceeding to the next

= Each has implications for how the retrieval index is
structured and stored



Introduction to Information Retrieval Sec. 7.1

Efficient cosine ranking

* Find the K docs in the collection “nearest” to the
query = K largest query-doc cosines.

= Efficient ranking:

* Choosing the K largest cosine values efficiently.
= Can we do this without computing all N cosines?



Introduction to Information Retrieval

Safe vs non-safe ranking

= The terminology “safe ranking” is used for methods
that guarantee that the K docs returned are the K
absolute highest scoring documents

= (Not necessarily just under cosine similarity)

= |s it ok to be non-safe?

= |fitis—then how do we ensure we don’t get too far
from the safe solution?

= How do we measure if we are far?



Introduction to Information Retrieval

Non-safe ranking

= Covered in depth in Coursera video (number 7)

= Non-safe ranking may be okay
= Ranking function is only a proxy for user happiness
= Documents close to top K may be just fine

= |ndex elimination
= Only consider high-idf query terms
= Only consider docs containing many query terms

= Champion lists
= High/low lists, tiered indexes
= Order postings by g(d) (query-indep. quality score)



Introduction to Information Retrieval

SAFE RANKING



Introduction to Information Retrieval

Safe ranking

= When we output the top K docs, we have a proof
that these are indeed the top K

= Does this imply we always have to compute all N
cosines?

= We’ll look at pruning methods
= So we only fully score some J documents

= Do we have to sort the J cosine scores?

10



Introduction to Information Retrieval Sec. 7.1

Computing the K largest cosines:
selection vs. sorting

= Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

= not to totally order all docs in the collection
= Can we pick off docs with K highest cosines?
" LetJ=number of docs with nonzero cosines

= We seek the K best of these J



Introduction to Information Retrieval Sec. 7.1

Use heap for selecting top K

= Binary tree in which each node’s value > the values
of children

= Takes 2J operations to construct, then each of K
“winners” read off in O(log J) steps.

= ForJ=1M, K=100, this is about 10% of the cost of
sorting.




Introduction to Information Retrieval

WAND scoring

= An instance of DAAT scoring

= Basic idea reminiscent of branch and bound

= We maintain a running threshold score — e.g., the Kt
highest score computed so far

= We prune away all docs whose cosine scores are
guaranteed to be below the threshold

= We compute exact cosine scores for only the un-pruned
docs

Broder et al. Efficient Query Evaluation using a Two-Level Retrieval Process.

13



Introduction to Information Retrieval

Index structure for WAND

= Postings ordered by docID

= Assume a special iterator on the postings of the form
“go to the first docID greater than or equal to X”

= Typical state: we have a “finger” at some docID in
the postings of each query term
= Each finger moves only to the right, to larger doclDs
= |nvariant — all docIDs lower than any finger have
already been processed, meaning

= These doclDs are either pruned away or
= Their cosine scores have been computed

14



Introduction to Information Retrieval

Upper bounds

= At all times for each query term t, we maintain an
upper bound UB, on the score contribution of any
doc to the right of the finger
= Max (over docs remaining in t’s postings) of w,(doc)

&nger
t = Pl Pl Pl PRCRCREel U - w38

As finger moves right, UB drops

15



Introduction to Information Retrieval

Pivoting

= Query: catcher in the rye

= Let’s say the current finger positions are as below
\ Threshold = 6.8

catcher 273 ﬂ UB stcher = 2-3

rye 304 | UBpe =18 1

n 589 UB, =33 .

the 762 H UBy,, = 4.3

16



Introduction to Information Retrieval

Prune docs that have no hope

= Terms sorted in order of finger positions

= Move fingers to 589 or right

catcher

rye

n

the

Y

273

Hopeless docs

\

304

Hopeless docs

Threshold = 6.8

UBcatcher =2.3

UB,,. = 1.8

UBin = 3.3

UB,, = 4.3

Update UB’s

17



Introduction to Information Retrieval

Compute 589’s score if need be

= |f 589 is present in enough postings, compute its full
cosine score — else some fingers to right of 589

= Pivot again ...

catcher 589 |

rye 589 H

in >89 *

the 762 H

18



Introduction to Information Retrieval

WAND summary

= |n tests, WAND leads to a 90+% reduction in score
computation
= Better gains on longer queries
= Nothing we did was specific to cosine ranking
= We need scoring to be additive by term

= WAND and variants give us safe ranking

= Possible to devise “careless” variants that are a bit faster
but not safe (see summary in Ding+Suel 2011)

= |deas combine some of the non-safe scoring we
considered

19



