Introduction to

CS276: Information Retrieval and Web Search
Christopher Manning and Pandu Nayak

Lecture 14: Learning to Rank (with GBDTSs)

Borrows slides/pictures from Schigehiko Schamoni

Introduction to Information Retrieval Sec. 15.4

Machine learning for IR ranking?

= We've looked at methods for ranking documents in IR

= Cosine similarity, inverse document frequency, BM25, proximity, pivoted
document length normalization, (will look at) Pagerank, ...

= We’ve looked at methods for classifying documents
using supervised machine learning classifiers
= Rocchio, kNN, decision trees, etc.

= Surely we can also use machine learning to rank the
documents displayed in search results?
= Sounds like a good idea
= Known as “machine-learned relevance” or “learning to rank”

Introduction to Information Retrieval

Senior Machine Learning Scientist A e
Overstock.com - © Midvale, UT, US

Posted 1 day ago - 63 views

Save Apply
Job description

Senior Machine Learning Scientist

The Migmu,e_l_ga,;mn,g:' i igigmis; focuses on QQ,ie machine learning techniques that
includq search rankingjrecommender systemg, natural language processing, computer
vision, deep learning, fraud and abuse detection, advertising technologies,
personalization and predictive modeling. Our Machine Learning scientists have the
opportunity to build cutting-edge e-commerce technologies in all these areas and
apply their ideas in different products across our platform. We are looking for
individuals who are passionate about machine learning and have a track record as
production quality engineers. The Senior Machine Learning Scientist is self-sufficient

and can hit the ground running.

Job Responsibilities
e Design and implement core machine learning algorithms used by different
product teams, included but not limited to: search ranking, recommender
systems, natural language processing, computer vision, deep learning, fraud
and abuse detection, advertising technologies, personalization, marketing, CRM
and supply chain

Introduction to Information Retrieval

Machine learning for IR ranking

" This “good idea” has been actively researched —and
actively deployed by major web search engines —in

the last 10 years
= Why didn’t it happen earlier?

= Modern supervised ML has been around for about 25
years...

= Naive Bayes has been around for about 60 years...

Introduction to Information Retrieval

Machine learning for IR ranking

" There’s some truth to the fact that the IR community
wasn’t very connected to the ML community

= But there were a whole bunch of precursors:

= Wong, S.K. et al. 1988. Linear structure in information
retrieval. SIGIR 1988.

= Fuhr, N. 1992. Probabilistic methods in information
retrieval. Computer Journal.

= Gey, F. C. 1994. Inferring probability of relevance using the
method of logistic regression. SIGIR 1994.

= Herbrich, R. et al. 2000. Large Margin Rank Boundaries for
Ordinal Regression. Advances in Large Margin Classifiers.

Introduction to Information Retrieval

Why weren’t early attempts very
successful/influential?

= Sometimes an idea just takes time to be appreciated...

= Limited training data

= Especially for real world use (as opposed to writing
academic papers), it was very hard to gather test collection
qgueries and relevance judgments that are representative of
real user needs and judgments on documents returned

= This has changed, both in academia and industry

= Poor machine learning techniques
" |nsufficient customization to IR problem
* Not enough features for ML to show value

Introduction to Information Retrieval

Why wasn’t ML much needed?

" Traditional ranking functions in IR used a very small
number of features, e.g.,
= Term frequency
" |nverse document frequency
= Document length

" |t was easy possible to tune weighting coefficients by
hand
= And people did
= You students do it in PA3

Introduction to Information Retrieval

Why is ML needed now?

* Modern (web) systems use a great number of features:
= Arbitrary useful features — not a single unified model
= Log frequency of query word in anchor text?

= Query word in color on page?

= # of images on page”?

= # of (out) links on page?

= PageRank of page?

= URLlength?

= URL contains “~"?

= Page edit recency?

= Page loading speed

" The New York Times in 2008-06-03 quoted Amit Singhal as

saying Google was using over 200 such features (“signals”) —
so it’s sure to be over 500 today. ©

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

= Collect a training corpus of (g, d, r) triples
= Relevance ris here binary (but may be multiclass, with 3—7 values)
= Query-Document pair is represented by a feature vector
" x=(a, w) aiscosine similarity, w is minimum query window size
= w is the the shortest text span that includes all query words
= Query term proximity is an important new weighting factor

= Train a machine learning model to predict the class r of a document-

query pair

example docID query cosine score w judgment
D, 37 linux operating system 0.032 3 relevant

D, 37 penguin logo 0.02 - nonrelevant
D, 238 operating system 0.043 2 relevant

Dy 238 runtime environment 0.004 2 nonrelevant
D5 1741 kernel layer 0.022 3 relevant

D¢ 2094 device driver 0.03 2 relevant

OF 3191 device driver 0.027 5 nonrelevant

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

= A linear score function is then
Score(d, q) = Score(a, w) =aa + bw + ¢
= And the linear classifier is
Decide relevant if Score(d, g) > 8

= ... just like when we were doing text classification

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

0.05
6 .
¥ INORSE Deccision surface
o R N
S R R
& R R
S R
o
(@}
. N N
0.025 R R
N
IR/ N N
N N
N N
O >
2 3 4 5

Term proximity @

Introduction to Information Retrieval

More complex example of using classification for
search ranking [Nallapati 2004]

= We can generalize this to classifier functions over
more features

"= We can use other methods for learning the linear
classifier weights

Introduction to Information Retrieval

An SVM classifier for information retrieval
[Nallapati 2004]

= Let relevance score g(r|d,q) = wef(d,g) + b

= Uses SVM: want g(r|d,q) < -1 for nonrelevant
documents and g(r|d,q) = 1 for relevant documents

= SVM testing: decide relevant iff g(r|d,q) 20

= Features are not word presence features (how would you
deal with query words not in your training data?) but
scores like the summed (log) tf of all query terms

* Unbalanced data (which can result in trivial always-say-
nonrelevant classifiers) is dealt with by undersampling
nonrelevant documents during training (just take some at
random)

Introduction to Information Retrieval

An SVM classifier for information retrieval
[Nallapati 2004]

= Experiments:
= 4 TREC data sets

= Comparisons with Lemur, a state-of-the-art open source IR
engine (Language Model (LM)-based — see /IR ch. 12)

= Linear kernel normally best or almost as good as quadratic
kernel, and so used in reported results

= 6 features, all variants of tf, idf, and tf.idf scores

An SVM classifier for information retrieval
[Nallapati 2004]

Train\Test | [Disk3 ___|Diska:5 __|WT10G (web)

TREC Disk 3 Lemur 0.1785 0.2503 0.2666
SVM 0.1728 0.2432 0.2750
Disk 4-5 Lemur 0.1773 0.2516 0.2656
SVM 0.1646 0.2355 0.2675

= At best the results are about equal to Lemur
= Actually a little bit below

= Paper’s advertisement: Easy to add more features

= This is illustrated on a homepage finding task on
WT10G:
= Baseline Lemur 52% success@10, baseline SVM 58%
= SVM with URL-depth, and in-link features: 78% success@10

Introduction to Information Retrieval Sec. 15.4.2

“Learning to rank”

= Classification probably isn’t the right way to think
about approaching ad hoc IR:
= (Classification problems: Map to an unordered set of classes
= Regression problems: Map to a real value [See PA3]

* Ordinal regression (or “ranking”) problems: Map to an
ordered set of classes
= A fairly obscure sub-branch of statistics, but what we want here
= This formulation gives extra power:
= Relations between relevance levels are modeled

* Documents are good versus other documents for a query
given collection; not an absolute scale of goodness

Introduction to Information Retrieval

“Learning to rank”

= Assume a number of categories C of relevance exist
" These are totally ordered: ¢; < ¢, <...<¢
= This is the ordinal regression setup

= Assume training data is available consisting of document-

query pairs (d, g) represented as feature vectors x; with
relevance ranking c;

Introduction to Information Retrieval

Algorithms used for ranking in search

= Support Vector Machines (Vapnik, 1995)
= Adapted to ranking: Ranking SVM (Joachims 2002)

* Neural Nets: RankNet (Burges et al., 2006)
" Tree Ensembles

= Random Forests (Breiman and Schapire, 2001)

= Boosted Decision Trees

= Multiple Additive Regression Trees (Friedman, 1999)
* Gradient-boosted decision trees: LambdaMART (Burges, 2010)
= Used by all search engines? AltaVista, Yahoo!, Bing, Yandex, ...

= All top teams in the 2010 Yahoo! Learning to Rank
Challenge used combinations with Tree Ensembles!

Introduction to Information Retrieval

Yahoo! Learning to Rank Challenge

(Chapelle and Chang, 2011)

= Yahoo! Webscope dataset : 36,251 queries, 883k
documents, 700 features, 5 ranking levels
= Ratings: Perfect (navigational), Excellent, Good, Fair, Bad
= Real web data from U.S. and “an Asian country”
= set-1: 473,134 feature vectors; 519 features; 19,944 queries
= set-2: 34,815 feature vectors; 596 features; 1,266 queries

* Winner (Burges et al.) was linear combo of 12 models:
= 8 Tree Ensembles (LambdaMART)
= 2 LambdaRank Neural Nets
= 2 Logistic regression models

Introduction to Information Retrieval

Regression trees

= Decision trees can predict a real value
= They’re then often called “regression trees”

= The value of a leaf node is the mean of all instances
at the leafy, = f(x;) = X;
= Splitting criterion: Standard Deviation Reduction

" Choose split value to minimize the variance (standard
deviation SD) of the values in each subset S; of S induced
by split A (normally just a binary split for easy search):

= SDR(A,S) = SD(S) — Zi%SD(Si)

= SD = ¥,(y; — f(x)?
"= Termination: cutoff on SD or #examples or tree depth

Introduction to Information Retrieval

Tralning a regression tree

" The algorithm searches for split variables and split
points, X; and v, so as to minimize the predicted

error, i.e., 2;(v; — f(x;))?.

X2

Introduction to Information Retrieval

" You can grow tree till O error (if no identical points
with different scores)

X2

= 3de.g.: http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Introduction to Information Retrieval

The concept of boosting

= Motivating question:

= Can we use individually weak machine learning classifiers
to build a high-accuracy classification system?

= (Classic approach (AdaBoost)
= Learn a small decision tree (often a 1-split decision stump)
= |t will get the biggest split in the data right

= Repeat:
= Upweight examples it gets wrong;
* Downweight examples it gets right
" Learn another small decision tree on that reweighted data

= (Classify with weighted vote of all trees
= Weight trees by individual accuracy

Towards gradient boosting:

Function estimation

= Want: a function F*(x) that maps x to y, s.t. the
expected value of some loss function L(y, F(x)) is
minimized:
= F*(x) = argmingy) E), yL(y, F (x))
= Boosting approximates F*(x) by an additive
expansion

= F(x) = %=1 Bmh(x; ay,)
= where h(x; a) are simple functions of x with

parameters a = {a,, a,, ..., a,} defining the function h,
and the B are weighting coefficients

Introduction to Information Retrieval

Finding parameters

" Function parameters are iteratively fit to the training
data:
= Set Fy(x) = initial guess (or zero)
= Foreachm=1,2,..,. M

" a,, = argmin, ZiL(yi»Fm—l(xi) + Bh(x;, a))
. Fm(x) - Fm—l(xi) + ,Bh(xir Cl)

= You successively estimate and add a new tree to the
sum

" You never go back to revisit past decisions

Introduction to Information Retrieval

Finding parameters

" Gradient boosting approximately achieves this for
any differentiable loss function

= Fit the function h(x; a) by least squares
" @p, = argming Y;[¥im — h(x;, @)]?
" to the “pseudo-residuals” (deviation from desired scores)

.S OL(yi,F(xi))
Yim = | or

F(x)=Fpn_1(x)

= Whatever the loss function, gradient boosting
simplifies the problem to least squares estimation!!!

= We can take a gradient (Newton) step to improve model

Introduction to Information Retrieval

Gradient tree boosting

= Gradient tree boosting applies this approach on
functions h(x; a) which are small regression trees
" The trees used normally have 1-8 splits only
= Sometimes stumps do best!

= The allowed depth of the tree controls the feature
interaction order of model (do you allow feature pair
conjunctions, feature triple conjunctions, etc.?)

Learning a gradient-boosted regression

tree

= First, learn the simplest predictor that predicts a
constant value that minimizes the error on the
training data

X2

A FO(x)
2 :
1 4 !
1 4 T
2 : 5[1-x]"2 + 4[2-x]"2
1 4 ‘ + 3[3-x]72 + 5[4-x]"2
4 ' => x=2.471
1 3
1 2
3
2
3
>

Learning a gradient-boosted regression

tree

= We want to find value y,,, for root node of tree

250

Quadratic loss for the leaf (red):

200 |\

f(x) =5-(1—x)2—|—4-(2—x)2
+3-(3—x)>+5-(4—x)?

150 |\

f(x) is quadratic, convex
= Optimum at f’(x) = 0 (green)

ol
8g(x) 5. (24 2x) £ 4 (—4 + 2x)’ PR (S TS A T T
X SR

00
+3-(—6+2x)*+5-(—8+2x)? e

= — 84 + 34x = 34(x — 2.471) T

Introduction to Information Retrieval

Learning a gradient-boosted regression
tree

= We split root node based on least squares criterion
and build a tree predicting “pseudo-residuals”

X2
A FO(x) F1(x)
T (=D
2 1.529
1 -0.471 | 4 E Y N
-1.471 . 1.529 !
1471 2 1.529
1 -0.471 4 5
-1.471 1529 4 : T T
: 1.529
1 3 " F(x) = FO(x) = 2.471 5[1-(2.4714+x)]°2 3[3-(2.471+x)]"2
1 -1.471 2 '0.529 : +4[2-(2.4714x)]72 +3[3-(2.471-x)]"2
1.471 _0.471 3 : => x=-1.027 => x=1.154
2 f 0.529
-0.471 | 3 .
0.529 ; >

vl x1

Introduction to Information Retrieval

Learning a gradient-boosted regression

tree

= Then another tree is added to fit the actua

residuals” of the first tree

X2
A
: 4
2 0.375
1 0556 | 4
0.444 . 0.375
1 : 4
0.444 2 0.375
1 0.556 4
0.444 . 0.375 4 .
v2 ! 0.375____3
1 3 '
1 -0.444 2 1-0.625
-0.444 0.556 3
2 : 0.625
0.556 | 3
0.625

vl

| “pseudo-
F1(x) F2(x)
Y N

2D 3
1

2[1-(1.444+x)]"2 3[1-(1.444+x)]"2
+2[2-(1.444+x)]"2 +2[2-(1.444+x]"2
+3[3-(3.625+x)]"2 +5[4-(3.625+x)]"2

F(x) = FO(x) + F1(x)

=> x=-0.236 => x=0.166
2.471 2.471
-1.027 | +1.154
=1.444 | =3.625

x1

Introduction to Information Retrieval

Multiple Additive Regression Trees
(MART) [Friedman 1999]

Algorithm 1 Multiple Additive Regression Trees.

1: Initialize Fo(x) = arg min,, Zf\l:l L(yi,)
2. form=1,.... M do
3: fori=1,...,N do

. ~ BL(Yi,F(Xi))}

4. / —
Yim [OFi) | F(x)=Fm_1(x)

5: end for
6: {ka}l’le // Fit a regression tree to targets yin
7: for k=1,.... K, do
8: Ykm = arg miny ZX,.eij L(yi, Fm—1(xi) +7)
9: end for
10: Fm(x) = Fm—l(x) + 772?21 ’Ykml(xi € ka)
11: end for

12: Return Fp(x)

Introduction to Information Retrieval

Historical path to LambdaMART:
via RankNet (a neural net ranker)

= Have differentiable function with model parameters w:
x> f(ow) =s;
" For query g, learn probability of different ranking class
for documents d; > d; via:

PLJ:P(dl>d]): !

1+ 0G5

= Cost function calculates cross entropy loss:
= (= —P" lOgPU — (1 — [_)U) lOg(l _Pij)
= Where P;; is the model probability; P the actual
probablllty (O or 1 for categorical Judgments)

Introduction to Information Retrieval

RankNet (Burges 2010)

= Combining these equations gives

"C= %(1 — Sij)o(si —s;) +log (1 + 6_”(5"_51'))

= where, for a given query, S;; € {0,+1, -1}
1if d;is more relevant than d; -1 if the reverse, and
0 if the they have the same label

ac 1 ac
- ds; O-((1 Sl]) G(Si—Sj)) - _a_gj
8_(: o 8_C 85,7 L9 dC aSJ o l(l—S)— | 8S,‘ B aSj
dwy dsidwy dsjowg 2 Y 4 O lsims)) dwr dwy

ds;i I
= (awk - 3Wk)

Introduction to Information Retrieval

RankNet lambdas

* The crucial part of the update is

0C 0C 85,' oC aSj 85,- 8Sj
R — + —)\i' .
(9Wk 85,' 8Wk 851' aWk J

a_Wk_aWk

= A;jdescribes the desired change of scores for the pair
of documents d; and d,

= The sum of all A;'s and A;; ’s of a query-doc vector x;
w.r.t. all other differently labelled documents for g is

N=) XNi— Y A

J{ij}el k:{k,i}el

= A\ is (sort of) a gradient of the pairwise loss of vector x;

Introduction to Information Retrieval

RankNet lambdas (Burges 2010)

= (a)is the perfect ranking, (b) is a ranking with 10 pairwise
errors, (c) is a ranking with 8 pairwise errors. Each blue arrow
represents the A; for each query-document vector x;

Introduction to Information Retrieval

RankNet lambdas (Burges 2010)

* Problem: RankNet is based on pairwise error, while modern IR
measures emphasize higher ranking positions. Red arrows
show better A’s for modern IR, esp. web search.

il
T4

Introduction to Information Retrieval

From RankNet to LambdaRank

Rather than working with pairwise ranking errors,
scale by effect a change has on NDCG

ldea: Multiply A’s by |AZ|, the difference of an IR
measure when d; and d; are swapped

E.g. | ANDCG| is the change in NDCG when swapping
d; and d; giving:

aC(si—sj) —0
" Ay = : =5 |ANDCG

ds; B 1+e?
Burges et al. “prove” (partly theory, partly empirical)
that this change is sufficient for model to optimize
NDCG

From LambdaRank to LambdaMART

= LambdaRank models gradients

= MART can be trained with gradients (“gradient
boosting”)

* Combine both to get LambdaMART
= MART with specified gradients and optimization step

Introduction to Information Retrieval

LambdaMART algorithm

set number of trees N, number of training samples m, number of leaves per tree L,
learning rate 1
fori =0tomdo
Fy(x;) = BaseModel(x;) //If BaseModel is empty, set Fy(x;) =0
end for
fork=1toN do
fori=0tomdo

Vi = Ai
L 9y
Wi = 9F_ (%)
end for

{Ry },L:1 // Create L leaf tree on {x;,y;}"", Ry is data items at leaf node /
Yik = M /I Assign leaf values based on Newton step.

Fi(xi) = Fp—1(xi) +n Y Yl (xi € Ri) /] Take step with learning rate 7.
end for

Introduction to Information Retrieval

Yahoo! Learning to rank challenge

= Goal was to validate learning to rank methods on a
large, “real” web search problem

= Previous work was mainly driven by LETOR datasets
" Great as first public learning-to-rank data
= Small: 10s of features, 100s of queries, 10k’s of docs

" Only feature vectors released
= Not URLs, queries, nor feature descriptions

= Wanting to keep privacy and proprietary info safe
= But included web graph features, click features, page

freshness and page classification features as well as text
match features

Introduction to Information Retrieval

Burges et al. (2011) entry systems

Model | Description ERR | NDCG
M1 LambdaMART optimized for ERR 0.461 | 0.774
M2 LambdaMART optimized for ERR trained on Augb0 0.464 | 0.786
M3 LambdaMART optimized for ERR trained on Aug70 0.462 | 0.780
M4 LambdaMART trained for ERR with MART scores as features 0.460 | 0.775
M5 LambdaMART optimized for NDCG 0.462 | 0.779
M6 LambdaMART optimized for NDCG trained on Augb0 0.464 | 0.787
M7 LambdaMART optimized for NDCG trained on Aug70 0.463 | 0.783
MS LambdaMART trained for NDCG with MART scores as features | 0.461 | 0.781
M9 LambdaRank optimized for ERR 0.453 | 0.750
M10 LambdaRank optimized for NDCG 0.453 | 0.757
M11 MART 0.455 | 0.772
M12 MART with output scores normalized to unit variance per query | 0.455 | 0.772

ERR = Expected reciprocal rank; see Chapelle and Chang (2011)

Introduction to Information Retrieval

They didn’t need to combine so many

Ensemble ERR | NDCG
All: M1-M12 0.4657 | 0.7878
All minus MARTs: M1-M10 0.4657 | 0.7875
LambdaMART only: M1-MS8 0.4652 | 0.7874
All minus LambdaRanks: M1-M8, M11, M12 | 0.4653 | 0.7879
Augmented only: M2, M3, M6, M7 0.4641 | 0.7864
Non-augmented: M1, M4, M5, M8-M12 0.4648 | 0.7850
Just ERR: M1-M3, M4, M9 0.4657 | 0.7860
Just NDCG: M5-M8, M10 0.4652 | 0.7869

All good systems performed almost

identically, trained on the same features

Table 4: ERR and NDCG accuracies on the final validation and test data.

Rank | Team Test ERR | Test NDCG | Valid ERR | Valid NDCG
1 | Ca3dSi207 0.468605 0.8041 0.4611 0.7995
2 | catonakeyboardinspace | 0.467857 0.8060 0.4609 0.8011
3 | MLG 0.466954 0.8026 0.4600 0.7960
4 | Joker 0.466776 0.8053 0.4607 0.8011
5| AG 0.466157 0.8018 0.4606 0.8010

It's not very clear that you need to use LambdaMART.

Methods like (pairwise) Logistic Rank seem to do just fine.

But use of trees seems to be de rigeur at search engine companies.
So maybe they’re a little better on big data?

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

= https://github.com/dmlc/xgboost/tree/master/demo/rank

= gijt clone https://github.com/dmlc/xgboost.git

* brew install unrar #somehow get unrar if don’t have it
= cd gboost/demo/rank

= ./wgetdata.sh # gets one of the LETOR datasets

= python notebook

https://github.com/dmlc/xgboost/tree/master/demo/rank

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

In [1]: import xgboost as xgb
from xgboost import DMatrix
from sklearn.datasets import load_svmlight file

Load the data: It's in svmlight format lines: class featnum:val ...
X_train, y train = load svmlight file("mg2008.train")

x_valid, y valid = load svmlight file("mg2008.vali")

X _test, y test = load svmlight file("mg2008.test")

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

In [4]: # MUST use groups of data items from same query to get IR ranking to work!
group train = []
with open("mg2008.train.group"”, "r") as f:
data = f.readlines()
for line in data:
group_train.append(int(line.split("\n")[0]))

group_valid = []
with open("mg2008.vali.group",
data = f.readlines()
for line in data:
group valid.append(int(line.split("\n")[01]))

n

r") as f:

group_test = []
with open("mg2008.test.group”,
data = f.readlines()
for line in data:
group_test.append(int(line.split("\n")[0]))

r") as f:

train _dmatrix = DMatrix(x_train, y_ train)
valid_dmatrix = DMatrix(x_valid, y_valid)
test dmatrix = DMatrix(x_test)

train dmatrix.set group(group train)
valid _dmatrix.set group(group valid)
test _dmatrix.set group(group_ test)

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

In [38]: | # Use rank:pairwise. eta is step size (between 0.01 and 0.1 probably); limit tree depth
The parameters I use here are different to the ones provided, and seem better (IMHO)
I track validation performance with ndcg@3
params = {'objective': 'rank:pairwise', 'eta': 0.05, 'gamma': 1.0,
'min_child weight': 0.1, 'max depth': 2, 'eval metric': 'ndcg@3'}
xgb_model = xgb.train(params, train dmatrix, num boost round=200,
evals=[(valid_dmatrix, 'validation')])

[0] validation-ndcg@3:0.661024
[1] validation-ndcg@3:0.669619
[2] validation-ndcg@3:0.669619
[3] validation-ndcg@3:0.669619
[4] validation-ndcg@3:0.669619
[51] validation-ndcg@3:0.669619
[6] validation-ndcg@3:0.673638
[7] validation-ndcg@3:0.673638
[8] validation-ndcg@3:0.673638
[9] validation-ndcg@3:0.671664

[10] validation-ndcg@3:0.671664
[11] validation-ndcg@3:0.671664
[12] validation-ndcg@3:0.671664

Introduction to Information Retrieval

Raw example of xgboost for ranking
with LambdaMART

[186] validation-ndcg@3:0.691521
[187] validation-ndcg@3:0.691521
[188] validation-ndcg@3:0.691521
[189] validation-ndcg@3:0.692755
[190] validation-ndcg@3:0.692553
[191] validation-ndcg@3:0.692041
[192] validation-ndcg@3:0.691207
[193] validation-ndcg@3:0.691207
[194] validation-ndcg@3:0.689713
[195] validation-ndcg@3:0.689713
[196] validation-ndcg@3:0.689713
[197] validation-ndcg@3:0.68975

[198] validation-ndcg@3:0.691244
[199] validation-ndcg@3:0.691244

In [21]: pred = xgb model.predict(test dmatrix)
pred
You would have to do some work with these, using group test
to evaluate for NDCG

Out[21]: array([1.3145036 , -0.9180857 , 1.3107703 , ..., 0.7397013 ,
1.2283247 , -0.46511227], dtype=float32)

Introduction to Information Retrieval

http://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking

€& - C [] www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking ® g

Q Search f Home # Write & Notifg 1 Christopher

526 WANT ANSWERS

Nud @
EE A

Latest activity: 20 Apr

* Why is machine leaming used heavily for Google's

ad ranking and less for their search ranking?

A lot of people I've talked to at Google have told me that the ad ranking
system is largely machine learning based, while search ranking is rooted in
functions that are written by humans using their intuition (with some
components using machine learning).

QUESTION TOPICS
What led to this difference?

Decision Trees Want Answers | 526 Comments 1+ Share 11 Downvote

Google Search

6 ANSWERS ASK TO ANSWER

Machine Learning

Google Christopher Manning

Edit Biography « Make Anonymous
Edit Topics

Write your answer, or answer later
SHARE QUESTION

W Twitter
€3 Facebook

| Edmond Lau, | worked on the Google Search Quality... (more)
J 828 upvotes by Jackie Bavaro (Google PM for 3 years), Gaurav Jha (Software

€ Add Question

There's more

Pick new people
and see the best

Update Your In

RELATED QUESTIC

What are the top 2!
Google uses?

Can | use Machine
rank search result
ElasticSearch?

What are the recen
learned ranking?

Should Quora use
Network (machine
rankings?

How do | learn Goc

n

http://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking

Introduction to Information Retrieval

Summary

The idea of learning ranking functions has been around
for about 20 years

But only more recently have ML knowledge, availability
of training datasets, a rich space of features, and massive
computation come together to make this a hot research
area

It’s too early to give a definitive statement on what
methods are best in this area

But machine-learned ranking over many features now
easily beats traditional hand-designed ranking functions
|n com pa rat|ve eva|uatIOnS [in part by using the hand-designed functions as features!]

There is every reason to think that the importance of
machine learning in IR will grow in the future.

Introduction to Information Retrieval

Resources

= /[Rsecs 6.1.2-3and 154

= Nallapati, R. Discriminative models for information
retrieval. SIGIR 2004.

= LETOR benchmark datasets
= Website with data, links to papers, benchmarks, etc.
= http://research.microsoft.com/users/LETOR/
= Everything you need to start research in this area! But smallish.

= C.J.C.Burges. From RankNet to LambdaRank to
LambdaMART: An Overview. Microsoft TR 2010.

= Q. Chapelle and Y. Chang. Yahoo! Learning to Rank
Challenge Overview. JMLR Proceedings 2011.

